Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Heat Capacity of the Pressure-Induced Superconductivity in Itinerant Ferromagnet UGe₂

Naoyuki Tateiwa¹, Tatsuo C Kobayashi¹, Kiichi Amaya², Yoshinori Haga³, Rikio Settai⁴, Yoshicika Onuki⁴

- ¹ KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531, Japan
- ² Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
- ³ ASRC, Japan Atomic Energy Research Institute, Tokai-mura, Naka-Gun, Ibaraki, 319-1195, Japan
- ⁴ Graduate School of Science, Osaka University, Toyonaka Osaka 560-8531, Japan

Recently co-existence of the ferromagnetism and superconductivity was reported in the high-pressure region (1.0-1.5 GPa) of UGe₂*. We performed the heat capacity measurement on UGe₂ under high pressure. At 1.13 GPa, we found a peak corresponding to the transition of the superconductivity. The superconducting temperature $T_{\rm SC}$ and Δ $C'(\gamma T_{\rm SC})$ are 0.7 K and 0.25 respectively. The superconducting transition was also confirmed by the appearance of the Meissner effect in the ac susceptibility. From these results, we confirm a bulk nature of the superconductivity in UGe₂. The value of C/T ($\sim 100 mJ/moleK^2$) just above $T_{\rm SC}$ at 1.13 GPa is as much as 3 times larger than that at ambient pressure, which indicates a large mass enhancement of quasi particles under high pressure † .

^{*}S.S.Saxena et al: Nature 406 (2000), 587. A.Huxley et al: to be published in Phys.Rev.B

[†]N.Tateiwa *et al*: Journal of Physics, Condens. Matter **13** (2001) L17